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Abstract
A long history of fire suppression in the western United States has significantly changed forest
structure and ecological function, leading to increasingly uncharacteristic fires in terms of size
and severity. Prior analyses of fire severity in California forests showed that time since last fire
and fire weather conditions predicted fire severity very well, while a larger regional analysis
showed that topography and climate were important predictors of high severity fire. There has
not yet been a large-scale study that incorporates topography, vegetation and fire-year climate to
determine regional scale high severity fire occurrence. We developed models to predict the
probability of high severity fire occurrence for the western US. We predict high severity fire
occurrence with some accuracy, and identify the relative importance of predictor classes in
determining the probability of high severity fire. The inclusion of both vegetation and fire-year
climate predictors was critical for model skill in identifying fires with high fractional fire severity.
The inclusion of fire-year climate variables allows this model to forecast inter-annual variability
in areas at future risk of high severity fire, beyond what slower-changing fuel conditions alone
can accomplish. This allows for more targeted land management, including resource allocation
for fuels reduction treatments to decrease the risk of high severity fire.
1. Introduction

Fire activity is changing in western United States
(WUS) forests, with increasing area burned and fire
season length partially attributed to warming (Ste-
phens 2005,Westerling et al 2006, Dennison et al 2014,
Westerling 2016, Abatzoglou and Williams 2016). A
century of fire suppression has also altered forest
structure and ecological function in parts of the WUS.
A build-up of fuels due to missed fire cycles in
formerly open canopy forests with predominately
surface fire regimes likely contributed to increasingly
uncharacteristic fires in terms of size and severity
(Keane et al 2002, Allen et al 2002, Miller et al 2009).
These changes increased firefighting costs: federal
firefighting appropriations averaged $2.9 billion for
2001–2007, up from $1.2 billion for 1996–2000
(Nazzaro 2007). The impacts of this history on
WUS fire severity have not been fully quantified.
© 2017 IOP Publishing Ltd
Climate is a significant predictor of large fire
occurrence and size (Westerling et al 2006, Preisler and
Westerling 2007, Swetnam and Anderson 2008,
Westerling 2016). Climate controls fire occurrence
and severity at broad and fine spatial and temporal
scales to promote fuel loading through biomass
accumulation and accelerate drying of fuels, and to
maintain active fires under favorable concurrent
atmospheric conditions, i.e. hot dry weather. Broad-
scale drought is linked to regionally synchronous large
fires, and recent decades have seen warmer, drier, and
longer growing seasons that explain much of WUS
large forest fire occurrence (Gedalof et al 2005,
Westerling et al 2006, Heyerdahl et al 2008, Morgan
et al 2008, Swetnam and Anderson 2008, Westerling
2016).

Additional controls on fire occurrence and severity
include land surface characteristics such as topography
and vegetation (Alexander et al 2006, Thompson
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et al 2007, Gill and Taylor 2009). Together with climate
and soils, topography (e.g. slope, aspect, elevation)
affects energy and water available for biomass produc-
tion and decomposition, and thus fuel accumulation.
Microclimate created by topography also influences fuel
flammability. Generally, higher elevation WUS sites
support cool moist forests with dense vegetation and
fuels,whereas lowerelevation sites support relatively less
productive dry forests (Agee 1993, Stephenson 1998,
Schoennagel et al 2004).

Controls on fire severity have been quantified at
many scales—individual fires, landscapes, and small
regions. Findings in Colorado Front Range and
Southwest forests indicate high severity fire occurrence
is a function of extreme weather, rather than vegetation
or woody fuel quantity (Holden et al 2007, Sherriff et al
2014). Collins et al (2007, 2009) found that both climate
and time since last fire best predicted patterns of fire
severity in the Sierra Nevada; time since last fire is
correlated with biomass and fuel buildup on a site. Lutz
et al (2009) found snowpack anomalies (top-down)
mediated lightning ignitions, area burned, and fire
severity in Yosemite National Park.

The importance of climate controls in these
regions contrasts with findings in parts of the
Northwest. In the North Cascade Range, Washington,
topographic and vegetation characteristics appeared to
mediate burn severity on sites with historically low to
moderate severity fire regimes, while climate controls
were most evident in high elevation, cool moist forests
(Cansler and McKenzie 2014). In central Idaho and
western Montana, Birch et al (2015) also found
topography and vegetation best predicted daily burn
severity values over daily weather and fuel moisture.

No consistent picture emerges of controls on
severity among these small-scale studies (individual
fires to small regions). Dillon et al (2011) performed
the broadest spatial analysis to date, modeling high
severity fire occurrence for northwestern and south-
western US ecoregions. They found both climate and
topography important for predicting high severity fire
occurrence, but concluded that topographic controls
were more important; their predictability was low in
extreme years with many large fires (Dillon et al 2011).

While existing studies examined high severity fire
occurrence at small scales, there has not yet been a
large-scale study that incorporates topography, vege-
tation, and climate to predict regional scale high
severity fire occurrence. Here we describe a model for
the WUS that predicts high severity fire occurrence,
conditional on large fire occurrence, and use it to
examine the relative importance of topography,
vegetation, and climate.

2. Methods
2.1. Spatial and temporal domain of analysis
Our spatial domain is a 1/8th degree latitude/
longitude modeling grid (∼12 km resolution) west
2

of –102.0625 longitude encompassing eleven states:
WA, OR, CA, ID, UT, NV, MT, WY, CO, NM, AZ. The
spatial resolution of data varies from 30 m (e.g.
observed high severity burned area, vegetation) to∼12
km (e.g. climate, topography). For higher resolution
variables, we calculated fractional area of each variable
within each modeling pixel.

The temporal domain was limited by Landsat
image-derived burn severity data (1984–2014). Using
land surface and hydroclimate predictors and monthly
fire discovery events, we model gridded high severity
fire occurrence at a monthly time step. Individual fire
records contain the discovery date, which often
approximates the ignition date and conditions likely
conducive to rapid fire spread (Westerling et al 2006).

The California Energy Commission specified
1961–1990 as a reference period for the four California
state climate and vulnerability assessments to date, to
reflect average climate conditions prior to significant
climate change impacts. We retain the 1961–1990
normal period for consistency and comparability of
results with prior work by the authors.

2.2. Burn severity data
We acquired burn severity data from the Monitoring
Trends in Burn Severity database (MTBS Data Access
2009, www.mtbs.gov; accessed 12/2008 and 9/2016),
resulting in a dataset with a total of 6808 fires (4493
through 2006) coded by discovery date (month, year),
using thematic burn severity images comparable
across space and time. We used ESRI Arc Macro
Language (ESRI 1999) to intersect burn severity data
with a 1/8th degree grid, assigning each fire to the grid
cell where a majority of area burned. We then
calculated fractional area burned in six severity classes
(unburned to low severity, low severity, moderate
severity, high severity, increased greenness, or unclas-
sified) by voxel (latitude, longitude, year � month)
(Eidenshink et al 2007).

2.3. Landscape data
Potential predictors of high severity fire included
topographic and ecosystem characteristics. Topo-
graphic data (minimum, mean, maximum and
standard deviation of elevation, slope, aspect) are 1/
8th degree products derived from the GTOPO30
global 30 Arc Second (1 km) Elevation Data Set
accessed online from the North American Land Data
Assimilation System (LDAS) (http://ldas.gsfc.nasa.
gov, Mitchell et al 2004).

We aggregated LANDFIRE existing vegetation
type (EVT) and fire regime condition class (FRCC)
variables to the modeling grid (Keane and Rollins
2007, www.landfire.gov). We used a reclassification of
the EVT layer, extracting only the fractional area of
forest types characterized by stand replacing fire
regimes (Westerling et al 2011a). FRCC is a metric
widely used to prioritize fuel treatments and character-
izes ecosystem departure, in terms of vegetation
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structure and composition, from historical conditions
(Hann 2004, Laverty andWilliams 2000). We extracted
the fractional area of each FRCC class: FRCC1
(departure <33%), FRCC2 (≥33% departure
<66%), and FRCC3 (departure ≥67%) (Holsinger
et al 2006, Keane and Rollins 2007). For this study,
FRCC is fixed in time, reflecting year 2000 observed
conditions.

2.4. Climate and hydrologic data
We obtained hydrologic variables simulated with the
Variable Infiltration Capacity (VIC) model and
gridded climate data used to force VIC from the
University of Washington National Hydrologic Pre-
diction System (NHPS) (www.hydro.washington.edu/
forecast/westwide/) (Liang et al 1994, Wood and
Lettenmaier 2006). VIC calculates daily surface water
and energy balances, estimating evaporation from
vegetation canopy, bare soil surface, and transpiration
by vegetation classes in each grid cell.

Climate data include temperature (Tmax, Tmin,
Tave) and precipitation (PPT), while moisture deficit
(MD), antecedent moisture deficit derivatives (e.g. 6
month prior moisture deficit), relative humidity (Rh),
soil moisture, and snow water equivalent (SWQ) were
derived from VIC and the Penman-Monteith equa-
tions (Penman 1948, Monteith 1965) on a monthly
time step from 1915 present (Westerling et al 2011a,
Westerling et al 2011b).

Stephenson (1998) showed that long term average
MD and actual evapotranspiration (AET) are biologi-
cally meaningful drivers of the spatial distribution of
vegetation types over multiple spatial scales. We used
these and related variables as proxies for spatial
variability in ecosystem and disturbance regime
sensitivity to climate, including 30 years (1961–1990)
means and standard deviations for Tave, PPT,
cumulative MD, and AET. Standard deviations
characterize inter-annual climate variability; for
instance, higher precipitation standard deviation
indicates locations with more dynamic precipitation
regimes. We also created a thin plate spline interacting
1961–1990 average MD and AET to indicate
biophysical site conditions for plant growth: different
forest types fall along the gradient of MD and AET
(Hastie et al 2001, Stephenson 1998).

2.5. Occurrence modeling
We employed a multi-step process in modeling high
severity fire occurrence. Previous research using parts
of this dataset and similar questions used both logistic
regression and classification and regression tree
(CART) methods, individually and together (Collins
et al 2007, Collins et al 2009, Dillon et al 2011, Preisler
and Westerling 2007, Westerling and Bryant 2008,
Westerling et al 2011a, Westerling et al 2011b). The
number of potential predictor variables available for
this analysis was 85. In order to limit the number of
variables in building a predictive model, we first used a
3

CART (Random Forest package in R; Liaw andWiener
2002) model to identify the 20 most important
variables in predicting fractional high severity. These
provided the potential predictor set for developing
conditional logistic regression models.

2.5.1. Logistic regression
We developed two conditional logistic regression
models to predict high severity fire occurrence.
Because MTBS contains only fires >400 ha, there
exists an implicit a priori condition for our models: the
occurrence of a >400 ha fire. Given this, we set a
threshold for the presence of high severity equal to the
median value of high severity fraction in the MTBS
data, 0.042. Then, given presence of high severity fire,
we set a threshold equal to the upper quartile cutoff,
0.1732. We define fires with high severity fraction
above this threshold as high severity fires.

To model the probability of high severity fire
presence, we use the logged odds, or logit:

Model Pa : Logit ðPjf > 0:042Þ
¼ lnðPPai=ð1�PPaiÞÞ ¼

X
ðb0 þ bjX ijÞ

where Xj is the set of predictor variables best fit to
Model Pa, PPai is the probability of high severity fire
presence, defined as the fraction f of high severity
fire >0.042 for a given month and grid cell indexed
by i.

Similarly, the model for occurrence of high severity
fraction >0.1732 is:

Model Hi : Logit ðPjf > 0:1732jf > 0:042Þ
¼ lnðPHii=ð1� PHiiÞÞ ¼

X
ðb0 þ bjX ikÞ

where Xk denotes predictors best fit to Model Hi,
where PHii is as PPai above. The probability of high
severity fire occurrence (conditional on >400 total ha
burned) for any month and location is the product of
these two model probabilities: PPai

� PHii.

The thresholds for high severity fire presence and
occurrence are necessarily arbitrary. Our goal was to be
as objective as possible, while defining meaningful
thresholds for relatively rare events, and to demon-
strate the predictability of high severity fires. Our
models specifically address the question:

Given that a fire burns >400 ha, and given that
high severity fire is present, what is the probability that
this is a high severity fire (i.e. in the upper quartile of
high severity burned area)?

We use the Aikake Information Criterion (AIC) to
evaluate model performance (Aikake 1974, Aikake
1981). The best model optimizes model fit (minimizes
AIC) while penalizing excess predictive parameters.
We performed leave-one-out cross-validation of the
best model. We tested variable importance by
calculating probabilities and testing model perfor-
mance after removing variable groups.

http://www.hydro.washington.edu/forecast/westwide/
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Table 1. List of predictors used in two conditional logistic regression models.

Variable Group and Description Model Pa Model Hi

TOPOGRAPHY

Elevation:

maximum y

mean y

CLIMATE

1961–1990:

Average temperature, mean and standard deviation y

Cumulative annual moisture deficit, standard deviation y

Culuative water year precipitaiton, standard deviation y y

Thin plate spline of 30 years average moisture deficit and evapotranspiration y y

Previous November moisture deficit y y

Normalized moisture deficit, month of fire y

Spring average temperature y y

VEGETATION

Fractional cover of forest with stand replacing fire regime y y

Fraction of FRCC3 y

Environ. Res. Lett. 12 (2017) 065003
2.5.2. Mapping probability of high severity fire
occurrence
We applied both conditional logistic regressionmodels
to all WUS voxels, 1984–2014 and calculated annual
probability of high severity fire occurrence for each
pixel by summing monthly values. We also calculated
the coefficient of variation (CoV) in the annual
probability values for each grid cell for the period
1984–2014. Here CoV measures inter-annual variabil-
ity in conditional probabilities, quantifying spatially
varying sensitivity to fire-year climate variables.
3. Results
3.1. Trends in high severity fire occurrence
We tested trends forWUS, each state, and eachmonth.
We found no significant trend in WUS high severity
fire occurrence over 1984–2014, except for Colorado
(table S1 available at stacks.iop.org/ERL/12/065003/
mmedia). While some studies have shown increasing
fire season length, we saw no significant increase in
high severity fire occurrence by month, May through
October (figure S1). We found no correlation between
fraction of high severity fire and total fire size, meaning
increasing large fires does not necessarily increase
fractional high severity fire area.

Seasonal occurrence of high severity fire coincided
with WUS burned area (figure S1). However, the fine-
grained distribution of high severity fire is quite
variable. California and Idaho had the largest number
of large fires and high severity fire occurrence, but
many fires had no presence of high severity fire. Both
Montana and Wyoming experienced fewer large fires
than other states, often with no high severity fire
present (figure S2).

3.2. Occurrence modeling
The best predictive models for high severity fire
presence included all variable groups—climate,
4

topography, and vegetation (table 1). Pixel mean
and maximum elevations are the only topographic
variables in the best model. Climate normals include
standard deviation of 1961–1990 cumulative annual
water-year precipitation and moisture deficits and the
thin plate spline interacting long term averageMD and
AET. Fire-year climate variables included average
spring temperature (SPRT), average monthly temper-
ature and normalized monthly moisture deficit at fire
discovery (MD0), and MD the previous November
(MD2).

Our best models included two vegetation varia-
bles. Fractional area of forest types with stand
replacing fire regimes was important for Models Pa
and Hi, while fractional area of FRCC3 was significant
only in Model Pa.

Removing fire-year climate, our models do not
predict extremes in inter-annual variability of high
severity fire occurrence. Removing vegetation varia-
bles does not significantly alter predicted vs. observed
high severity fire occurrences (high severity fire
occurrence in vegetation-only models still varies with
time because it is conditional on observed fires). Fixed
site-specific variables describe a constant spatial
distribution for probability of high severity fire given
a large fire, identifying location and average recurrence
rates for fire regimes where high severity fire occurs.
While all model iterations perform well with regard to
prediction vs. observation for locations with fires, the
AIC is lowest for the full model (table 2, figure 1).

3.3. Mapping probability of high severity fire
occurrence
To illustrate effects of variable groups, we mapped
differences for two years with few (1991 [N ¼ 16] and
1997 [N ¼ 10]) and two years with many (1996 [N ¼
75] and 2000 [N ¼ 88]) high severity fires (figure 2).
Removing fire-year climate produces probability maps
with a negligible shift in WUS average probabilities for
high severity fire occurrence, but with distinct regional
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Table 2. Performance statistics for logistic regression models. The delta AIC value is the difference between the full model and models
with variables removed. Lower AICs indicate better model performance.

AIC DAIC Adjusted R2

Cross validated

Adjusted R2

CV pearsons r Predicted

v Observed

Full Model Model PA 7799 — 0.811 (p 3.16e-12) 0.715 (p1.32e-9)

Model Hi 6425 — 0.647 (p 2.99e-8) 0.438 (p 3.0e-5) 0.676

No Vegetation Model PA 7888 89 0.820 (p 1.60e-12)

Model Hi 6554 129 0.575 (p 4.70e-7)

No Fire Year Climate Model PA 7943 144 0.817 (p 1.99e-12)

Model Hi 6534 109 0.633 (5.47e-8)

No Veg/No Climate Model PA 8030 231 0.821 (p 1.40e-12)

Model Hi 6690 265 0.582 (p 3.68e-7)
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Figure 1. Observed number of fires with high severity fraction>¼ 0.1732 (line) plotted against 1000 binomial draws using the cross-
validated conditional logistic regression probabilities (boxes show inter-quartile range and whiskers 1.5x inter-quartile range) for all
voxels with high severity fire. The model was built with data from 1984–2006.

Environ. Res. Lett. 12 (2017) 065003
differences (figure 2). For the low year 1991, removing
fire-year climate increases the maximum predicted
probability from 79% to 90%. For 1996, a high
occurrence year, removing fire-year climate increases
the maximum from 76% to 90%. Probability of
occurrence decreases over California; this pattern is
opposite the Northern Rocky Mountain and North
Cascade regions, where probabilities increase when we
remove fire-year climate.
4. Discussion
4.1 Inter-annual variability and trends in high
severity fire occurrence
Our results highlight the importance of inter-annually
varying climate for high severity fire occurrence. Fire-
5

year climate significantly modified conditional prob-
abilities of high severity fire occurrence across the
WUS, though with stronger effects in Sierra Nevada
and Southwest forests with mixed-severity fire regimes
than in Northwest and Northern Rockies forests with
high severity fire regimes.

Others have shown a lengthening fire season and
increasing large fire occurrence and burned area due to
climate change (Westerling et al 2006, Dennison et al
2014, Jolly et al 2015, Westerling 2016). While
conditions under which high severity fires in our
record burned were warmer and drier than the long
term average (figure S3), the lack of observed trends in
fire severity occurrence (table S1) may be at least in
part due to the short record, which begins right at the
time of the largest temperature-driven increase in
WUS forest burned area (Westerling et al 2006).
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Figure 2. Probability of high severity fire occurrence over the western US for two low fire years (1991, 1997) and two high fire years
(1996, 2000) with actual high severity fire events shown. Circles are large fires with high severity fraction>¼ 0.1732. The left column
shows the probability for the full model (Pa�Hi). Difference maps for the models with the fire-year climate and vegetation variables
removed are shown. Positive difference values indicate that the probability increased when the predictor set was removed; negative
values indicate a decrease in probability.
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Similarly, the record for fire severity begins >70
years after the start of fire suppression. Ecosystems
with short fire return intervals (7–10 years) may have
missed up to 10 fire cycles by the time the MTBS
severity record begins, while those with longer fire
return intervals may have missed few or none, so we
would only expect to see changes in severity due to fire
suppression and fuel buildup on some of the
landscape. Observed patterns of high severity fire
occurrencemay be influenced by changing climate and
management, but without more observations, we can
not quantify significant trends in high severity fire
occurrence.

4.2. Mapping high severity fire occurrence
Our best models included both climate and land
surface characteristics, e.g. topography and vegetation,
to predict fire severity. The impact of removing
vegetation or fire-year climate predictors is subtle.
Considering first removing temporally fixed predictors
such as fractional area in FRCC3 and in forest types
with high severity fire regimes, inter-annual variability
6

of model predictions is not significantly affected.
Spatially, effects are most pronounced in mountainous
areas, as one of the variables is forest fraction with high
severity fire regimes (figure 2). We see a general
decrease in probability of occurrence in the Sierra
Nevada, western Nevada, and Northern Rocky
Mountains. Both the Colorado Rocky Mountains
and the Northern Cascades in Washington generally
show a higher probability of high severity fire
occurrence when we remove vegetation variables.

When we remove fire-year climate variables,
conditional probabilities of high severity fire generally
decrease in California and Nevada, but increase in the
Pacific Northwest and Northern Rocky Mountain
regions (figure 2). Many of the ecosystems in the
Pacific Northwest and Northern Rocky Mountains are
dominated by cool moist forests with historically
infrequent stand replacing fire (Agee et al 1977, Agee
1993, Cansler and McKenzie 2014, Schoennagel et al
2004). These forests have abundant fuels, but are rarely
hot and dry enough to burn. Increased probabilities in
these regions after removing fire-year climate reflect
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climate’s importance in determining whether these
forests will burn and supports findings that fire-year
climate controls severity occurrence in this forest type
(Cansler and Mckenzie 2014, Schoennagel et al 2004).
Previous studies found fire-year climate less important
than topography and vegetation as a predictor of high
severity fire occurrence in the North Cascades and
Northern Rocky Mountains (Cansler and McKenzie
2014, Birch et al 2015, Dillon et al 2011). Our results
indicate that in these systems with a propensity for
high severity fire, fire-year climate still modulates high
severity fire occurrence.

Probability maps show fire-year climate both
amplifies and moderates probabilities of high severity
fire based on biophysical site characteristics. Fire-year
climate anomalies are highest for many high occur-
rence fire years: Tave, SPRT, MD0, MD2 (figure S3).
November MD (MD2) is an indicator for moisture
stress early in the water year; Van Mantgem et al
(2013) found that high pre-fire climatic water deficit is
related to increased post-fire tree mortality. These
variables all indicate high severity occurrence years are
drier and hotter than average, conditions that increase
fuel flammability and enhance conditions for fire
spread.

While climate variability significantly affected
conditional probabilities of high severity fire, those
probabilities are conditional on fires>400 ha. Though
the predictive maps for years like 1991 and 1996 look
very similar in terms of conditional probability of high
severity fire occurrence, the actual fire record is quite
different. The number of fires in the MTBS record for
1991 was 75 total (16 high severity) v. 272 total (75
high severity) fires for 1996. While ignitions resulting
in large fires were few, modeled probabilities indicate
that had more large fires occurred, high severity fire
would have been likely in 1991.

The inclusion of inter-annually varying climate is
critical for capturing high probability episodes in areas
where fire severity is highly variable, especially
California and the Southwest, where the coefficient
of variation (thus influence of climate) is higher
7

(figure 3). Our models imply substantial fraction high
severity fire in mixed severity fire regimes requires
more extreme climatic conditions. Conversely, in the
Northern Rocky Mountain and Pacific Northwest,
regions that are dominated by cool moist forests with
high severity fire regimes, the coefficient of variation
(and effect of climate) is lower.

Our results are similar to Dillon et al (2011)
regarding the importance of topography, but differ
with respect to the importance of fire-year climate and
the ability to predict extremes in high severity fire
occurrence. This is likely due to differences in
methodology and data. In our study each fire is
classified as a high severity fire or not. Dillon et al
(2011) selected a random subset of individual 30m fire
pixels classified to high severity or not. This means that
they could select multiple pixels from a single fire with
different classification, whereas their climate data
would be identical for pixels from a given fire.

Dillon et al (2011) tested different independent
climate variables, which could also lead to the differing
conclusions. For each fire, we used hydroclimate
variables for the voxel where the majority of area
burned. Dillon et al (2011) interpolated monthly
temperature and precipitation for the central latitude,
longitude and mean elevation of each fire. Their soil
moistures were simulated with VIC, as were our
hydroclimate data, but at coarser scale. We also test a
larger set of hydroclimate variables. Comparing
approaches, we expect theirs would have more power
to describe topographic controls on fire severity,
whereas the present study may be better suited to
demonstrating climatic controls.
5. Conclusions

While conditional probabilities of high severity fire
occurrence are partially determined by biophysical
setting, existing vegetation and fuels, our models
demonstrate fire-year climate amplifies or moderates
risk of high severity fire occurrence given ignition and



Environ. Res. Lett. 12 (2017) 065003
growth to at least 400 ha burned area, and is important
for predicting extremes in high severity fire occur-
rence. These models could be used with others that
predict large fire occurrence to plan for resource
allocation or mitigation efforts, or to assess how high
severity fire occurrence might respond to changing
climate and fuels management.

The importance of hydroclimate variables, espe-
cially fire-year climate, suggests further improvements
could be achieved with finer scale, more realistic data,
especially in mountainous terrain where climate varies
greatly with topography. Hydroclimate was simulated
in VIC with a static vegetation layer. Sensitivity
analyses of large vegetation changes in VIC did not
result in large changes in MD or AET (unpublished,
AL Westerling personal communication); newer-gen-
eration hydrologic models might improve simulations.
Additionally, FRCC that more closely represents
individual fires or that could be combined with fuel
availability might improve its value as a predictor.

Because probabilities modeled here are condition-
al on large fire occurrence, they need to be coupled
with models of large fire occurrence in order to predict
high severity fire occurrence. As with all models, ours
has limitations, but its performance is robust. This is
the first study to use the entire MTBS database to
examine patterns in high severity fire, identify the
importance of fire year climate, and predict extremes
in high severity fire occurrence conditional on large
fire occurrence.
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